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By Paul Kuhn and Jemes P. Peterson
SUMMARY : ' -

The method of calculating shear—lag effects in axlally loaded panels
by meens of the previously developed concept of the "substitute single-
stringer panel" is simplified by an empirical expression for the width of
the substitute pemel which eliminstes the need for successive approxima—
tions. For simple types of single—stringer panels, a theory not dependent
on the assumptlion of Infinite transverse stiffness is developed that can
be used to estimate the effect of transverse stiffness on the stresses in
practical panels. Strain measurements on five panels indicate that the
theory should be adequate for design purposes and that the effect of
transverse stiffness may be appreciable.

JNTRODUCTION

The problem of Introducing concentrated forces at one end of a
longitudinally stiffened panel is a fundamental one in the shear—lag
theory and has been treated by a number of authors. The solutions
obtalned by standard methods of analysis are qulte cumberscme even for
panels of constant cross section, and most of them are not applicable
to the practical case of panelk with arbitrerily varisble cross section.
Moreover, almost all these solutions ere based on the assumption of
infinite transverse stiffness of the panel; this assumption leads to
the result that the maximm shear stress is infinite when there are no
discrete stringers attached to the sheet, a result which is so much in
error as to be useless to the stress analyst. For a finite number of
gtringers, the error becomes finite but is still appreciable in the usual -
range of stringer numbers.

In an effort to provide a practical method of shear—lag analysis,
an approximate "substitute single—stringer method" was presented in
reference 1. Although this method is also based on the assumption of
infinite transverse stiffness, it does not give infinite shear stresses
as the mathematically more rigorous methods do; in fact, the agreement
between this theory and early tests was found to be fairly good (refer—
ence 2). Further study of the problem indicated, however, that some
investigation of the influence of finite transverse stiffness was
desirable. The results of this Investigation are presented in this
paper.
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Reference 1 describes a successive—approximation method for locating
the substitute single stringer. In view of the epproximate nature of the
method, however, successive approximstions appear to be an unwarranted
complication. A "one—step™ method is therefore developed to locate the
substitute stringer. Although this subject is theoretically not directly
related to that of finite transverse stiffness, it was found necessery to
investigate the two subjects similtaneously, because the formilas
developed rest partly on an empiricel basis, and in tests the two problems
cannot be separated entirely.

The reference material, particularly that of a theoretical nature, 1s
scattered among a number of papers. In order to eliminate the necessity
that the reader refer to all these papers, the present investigation
incorporates a general discussion of the approximate method and of the
relevant features of the rigorous methods.

SYMBOLS
A area, square inches
E Young®s modulus, pounds per square inch
G shear modulus, pounds per square inch
K2 - &b @1_ + LI>
Eb \Ap A
%° - ma
P external load on half panel, pounds
b half-width of single—stringer panel, inches
ba transverse distance from centroid of flange to common centroid
of stringers in half-panel
bg transverse distance from flange to substitute aingle stringer
£ =28
be
n number of stringers in half panel
t gheet t}é_’sckness, inches (without subscript denotes shear carrying
shee

x distance from tip of panel, inches .




o direct stress, pounds per square inch
T shear stress, pounds per squere inch
Subscripts:

F flange

L longitudinal or stringer

R chordwise rib

s denotes substitute panel

T total

0 denotes station at tip (x = 0)

C d.enofes centrold of stringer materlal

METHODS AND ANAIYSES

Theory of 'single—strj_nger panel of Infinite transverse stiffness.—
The single—stringser pansel as visuallzed in the simplified shear—lag
theory consists of two flanges F (fig. 1(a)), a stringsr L, a connecting
sheet capable of developing only shear stresses, and a system of transverse
ribs. The ribs are assumed to be infinitely closely spaced; if they are
also assumed to have infinite axial stiffness, they do not enter into the
theory explicitly and will therefore not be shown in the figures. Through—
out this paper, symmetry about the longltudinal axls 1s assumed to exist
so that the analysis can be confined to the half-panel.

For a panel of constant cross sectlon, the equations of equilibrium
of the elements (fig. 1(b)) yleld the relaticms

~Ap dop = Tt dx = Aj, doy, (1)

If the transverse stiffness 1s infinite, the incremental sheer stress
caused by the difference between op .and or, 1s

ar = — = (op — op) ax (2)

Differentiation of expression (2) and substitution into it of.the values
for dop and doy from equation (1) glves the differential equation

2
g'-—T—Ke'r=0 (3)

ax=
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where

“BG2)

For the present purpose, attention may be confined to infinitely long
panels. The solution of equation (3) is then

-ERe (5)

A simple solution may also be obtained for & panel in which the flange is
tapered so as to maintain constant flange stress (fig. 2(a)). The
equilibrium equations are then (fig. 2(b))

~op dAp = Tt dx = Aj, dog, (6)

Relation (2) still applies and the d.ifferen'bia.l equation for this case
takes again the form of equation (3) with Kt substituted for K2,

where '
B2 = S0 (7)

The solutiaon 1s

PK!:AL .x (8)

T
Fo
where AFO denotes the cross—sectlonal area of the flange at the tip.

The cross—sectional area Ay necessary to maintain op constant,

obtained by substituting equation (8) into equation (6) and integrating,
is

by = gy — A (L - e—Ktx) (9)
I AFO < AI.’ a constant value of op cannot be obtained.

Rigorous theory of the multlgtringer panel of infinite transverse
stiffnegg.— For an idealized panel gimilar to that shown in figure 1(a)

but having several stringers, relations corresponding to eguations (1)
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and (2) can be written for each bay. For a panel such as that shown in

figure 3 (two stringers in the half—panel), the result is a set of two
simltaneous differential equations

‘ 7
g%l —T1K122 + 72K222 =0
> (10)
vy 2 2
—a =0
"> Tokog™ + 1Ko ]

where the coefficients KX are similar in form to the coefficient K
given in equation (4) except that they involve the width of the individual

sheet bay and the areas of the adjacent stringers. The solution may be
written in the form

-~

Cle—le + Cee"KEx

™1
(1)

To C3e_le + C)J_e—K'Bx

The constants can be determined by standerd methods without difficulty,
but the rather cumberscme formmlas are not of sufficient interest to be
glven herein. An equivalent solution may be found in reference 3 in
glightly different form (the differentiel equations are written for the
stringer forces instead of the shear stresses).

For penels with more stringers (say 3 to 10 in the half—panel),
the standard methods for determining the constants become very cumbersome,
and mathematical refinements are desirable. A large amount of work on
thls subJect has been done, chiefly in England. Reference 4 is
representative of the results obtained and was used as basis for the
camparetive calculations to be shown subsequently herein. The stresses
are obtained by summing a number of terms of en infinite series after
the coefficients for these serles have been obtained by solving a
transcendental equation for each coefficient; the computations are quite

lengthy, particularly for points near the tip of the panel where the
convergence ig slow.

When the number of stringers becomes very large, the most convenient
method of approach is to assume that the stringers are spread out into
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a "stringer sheet" of uniform thickness; the set of simultaneous ordinary
differential equatiocns is then replaced by a partial differential equation.
This problem was solved by investigators in several countries during

the war years, with results which are either strictly equivalent or else
differ only in minor details. The solution given .in reference 5 is

used in the present paper because the reference is readily available and
contains more numsrically computed cases than the others. The stringer—
sheet solution may be used as an approximation for panels with a finite
number of stringers. The stress in a given stringer is taken as equal
o the stress in the corresponding fiber (or "elemental stringer") of the
stringer sheet; the shear stress in a sheet bay between two stringers may
be similarly taken as the shear stress in the stringer sheet along a line
corresponding to the middle of the sheet bay. In reglons where the

ghear stress .changes rapldly in the chordwise direction, somewhat better
results are obtained by integrating the shear stress in the stringer
sheet between two lines corresponding to the stringers bounding the

sheet bay In question. Graphs and formulas based on these methods are
given in reference 6, and comparisons made by British investigators show
that there is fairly close agreement with the results obtained by
solving sets of simltaneous differential equatioms like equations (10)
when the number of stringers in the half-—panel 1s as low as five.

Very few attempts have been made to extend any of these mathematical
methods to panels with vaeriable cross section, and the computational
labor involved is too large to consider them as practical methods for
general use.

The substitute single—stringer method of analyzing multistringer
panels.— In practice, the flanges of multistringer panels are strongly
tapered in order to reduce the weight. Because the more rigorous
methods of analyzing multlstringer penels discussed in the preceding
gsection cannot deal with panels of arbitrarily variable section without
excessive lebor, if at all, a simplified method was developed and presented
in reference 1. The basic idea in this method is that the deslgner need
not know all the details of the stress distribution in the panel. He
needs to know primarily two items: the maximm shear stress, because it
determines the sheet thickness required, and the shear flow along the
flange, because 1t determines the rivet design; in addition, he must be
able to compute the flange stress in order to insure that the flange 1s
not tapered too rapidly. This information can be obtained with a fair
degree of accuracy by analyzing a simplified “substitute pamel” that is
identical with the actual panel except that all the stringers contalned
in the half-width are combined into a single stringer. The chordwise
location of this substitute stringer had to be established by theoretical
or experimental data. :

The procedure given in reference 1 was as follows. In first approxi-
mation, the substitute stringer is located at the common centroid of the
stringers which it replaces. The analysis of the "substitute single—
stringer panel" gives a first approximation for the chordwlse average
of the stringer stresses at all stations along the span. The chordwise
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distribution of these stresses ls then computed by use of an assumed
gimple law of distribution. The chordwise location of the centroid of
the stringer forces is next calculated and used as second approxlmation
for the location of the substitute stringer, and the process is repeated,
if necessary, until the changes becoms negligible.

Test results showed reasonable agreement with those calculated by
the foregolng procedure; however, because of the approximate nature of
the method, the use of successive approximations appears somewhat
unjustified. A procedure will therefore be developed later in this
paper for establishing the location of the substitute stringer directly.

The substitute single~stringer panel with arbitrary variation of
cross sectlon along the span can be analyzed by means of the recurrence
formula glven in reference 7. Ome ltem should be noted that is not
covered in this reference. The elementary solution lg deflned as that
glving the normal stresses

D SN
"F-UL—%JrAL—A-T (11)

Now, 1f Ap or A (or both) vary along the span, the "elementary
flange force" (the flenge force given by the elementary theory)

PAg
Fp = —
Aq

and the (total) "elementary stringer force"

P
o

Ap

will also vary along the span. For static equilibrium, this variation
calls for "elementary shear flows” '

ar a (A a (&
- R @) 3 o

These elementary shear flows must be added to those arising from the
X—forces of the shear-lag analysis made according to reference T.
/
When the area Ay (or Aj) varles along the span by steps,

formula (12) would give an infinite shear flow that acts, however, only

over an infinitesimally small distance along the span; the elemsntary
gshear force is therefore mathematically Indeterminate. Fhysical
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consideration of the problem suggests that the step—curve of area varia-—
tion should be replaced by a continuous curve for the purpose of evaluating
formula (12). If the steps are close together, or small, a fair curve
may be drawn to represent the "effective"” variation of area. If the
steps are not close together and are large, the "effective" curve will
undoubtedly not be falr (though continuous3 but there 1s neither theory
nor experlimental evlidence avallable at present to serve as a gulde in
estimating this curve. It will be advisable, therefore, to avoid this
uncertalinty by avolding a large step close to the tip of the panel,

where the shear stress l1s a maximm. The elementa.ry ghear flow in a
panel with constent—stress flange and a ratio /AL equal to unity
constitutes 25 percent of the total shear flow; tge problem of estimating

A;
the effective value of %:x- (ﬁ) at the tip 1s therefore of some
importance. i

The maximm shear stress probably always occurs in the sheet bay
ad Jacent to the flange; comsequently, for design purposes, there 1s no
apparent need for finding the chordwise distribution of the shear
stresses. The maximm stringer stress may be elther the uniform stress
existing at a large distance from the tip of the pansel or a local peak
close to the tip in the first stringer. If this local peek should be
of design interest, the stringer stresses in the tip reglon can be
estimated by the procedure for chordwise distribution given in reference 1.

Theory of single—stringer panel with finite transverse stliffness.—
The substitute single—stringer method of analyzing multistringer panels,
based on the theory of the single—stringer panel of infinite transverse
stiffness, has been applied quite successfully to a number of test
panels (references 1, 2, and other data). This fact suggested that the
substitute single—stringer method might elso be used to develop an
approximate theory for panels with finite transverse stiffness.

The panel is again visualized as in figure 1(a). The axial stiffness
of the ribs 1is now assumed to be finite; Because the ribs are assumsd
to be iInfinitely closely spaced, they may be considered as forming a
rib sheet; the thickmess tR of this sheet defines the extensional

stiffness of the ribs. (The rib shest has, of course, zero longitudinal
and shear stiffness). At the tip, a special rib of cross—sectional
area Ap 1s assumed to exist (fig. 4(a), where the ribs are shown a
finite distance apart for practical reascns).

A rib away from the tip 1s loaded by the difference in the shear
flows to either side of it (fig. 4(c)); these differences are small and
practically vanlsh at some distance from the tip. The tip rilb, however,
is loaded by the full shear flow existing at the tip (fig. h(b3
is, therefore, relatively heavily strained. The effect of f:Lnite
transverse stiffness may consequently be expected to be chiefly a tip
effect, and a theory developed for long panels ghould be adequate for
most practica.l needs.
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The shear stress T may be considered as made up of two parts
T =T 4 711t \ ‘ (13)

vhere the part 7! is due to the longitudinal strains (flange and
stringer strains) and the part T!' is due to the transverse strains
(ridb strains). The equilibrium equations (1) written for the panel
with infinite transverse stiffness remain unchanged, but equation (2)
mist be changed to read '

ar?

= w (v o) .

As mentioned before, any elemental rib is loaded by the difference
between the shear flows to either side of it (fig. 4(c)). Since the
shear flows are constant between the flange and the stringer, the rib
stress increases linearly from zero at the flange to a maximum at the
stringer. For convenience, let op designate the average stress in a

rib; the rib stress at the stringer is then 20R. The equilibrium
equation for a rlb then ylelds the expression

iy =~ 5 M (15)

The total extension of a rid is therefore
bgt dr
— =

The derivative of this extension defines a shear strain along the
flange (fig. 4(a))

aR=fE§-b=— (16)

ddgr

7= -

dx

The shear strain decreases linearly along the rib to zero at the stringer.
The theory of the single—stringer panel used herein,however, requires

the agsumption that the shear stress ig constant along the rib; the
average value (1/2) of the shear strain is therefore used to calculate
the part of the shear stress caused by transverse straina as

1 G-dBR _ @2t 27
2 dx LhEtg g42

T8 = —

(7)
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Differentiating twice, and letting

. : @2t
ylelds
2 L
a~rtt . d'T
5 = - (19)

Differentiation of expression (14) gives

aer? g (dop dog,

ax2  Eb\ax &

which can be transformed with the aid of the equilibrium equations (1)
into

d2rt o)

= K= 20)
N (

where K has the same meaning as glven before in formla (4). If
equations (19) and (20) are added and the defining expression (13) is
introduced, a slight rearrangement of terms gives the differential
equation

L
d*r 14d°% K2 _ _
F ogp a0 (21)

This equation reduces to equation (3) for the panel with infinite transverse

stiffness if it is multiplied through by o and ty 1s then increased
indefinitely.

The solution of the differential equation for the infinitely long
panel 1s i

T = Cle_Kl]I + Cge_Kex (22)

where the constants X are defined by

K2 = 5 (1 +/1 - hK2a> (23)
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-k (- ) (24)

Because K2a 1s often smwall, the computation of X, may give trouble

when the slide rule 1s used; the difficulty may be avoided by using the
approximation

Ko » K(l + %Kea,) (25)

The constents Cy and C, are determined from the boundary
conditions. One condition is, at x = O,

-2
Op Ag
and.
0L=O

Tne other condition 1s that the strain in the tip rib must be equal to
the strain in the adjacent edge of the rib sheet, or the strain in the
ad jacent elemental rib. The strain in the tip rib (fig. 4(b)) is
glven by the expression

and the strain in the adjacent elemental rid is obtained by modifying
expression (16) as

bt <d.'r>
eRO = - — (%
2ty \dx/,

With these boundary conditions, and with the auxiliary paramsters

-G
B = EbAp
/ - (26)
, _ p * Foly
g+ Ky J
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the constants are found to be

C

B
== (27)
2 Afg(l —7) - 0'(7K13 —- K23) 2

Cl = —7Co » ) (28)

For en infinitely stiff tip rid (Ap—>«), the expressions simplify to

7 = 2 ' (29)
1
3 B ‘
[ — 0)
2 Kyl — 1% (3
Cp = =10 (31)

When there is no tip rid (Ag = 0),

7=1

G =L
and consequently To = O, as 1t must be because no shear gtress can
exlist along a free edge.

Inspection of the derivation shows that the formilas are appllcable
to a panel with a constant-stress flange if Ay 18 understood. to be AFO
in the expression for P and K 1is replaced by Xt. If the shest

carries discrete transverse stiffeners of area Ay, and pitch d, the
thickness of the rib sheet lies between the limits

i g ()

The upper limit applies when the sheet is not buckled, the lower limit
when the sheet is fully buckled. For a buckled sheet, the value of G
mst also be reduced. Because the effect of finite transverse stiffness
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is localized near the tip, transverse stiffeners should probably be
disregarded unless their pitch d 1s less them 1/Kj.

Location of substitute stringer established by comparison with
"rigorous" methods.— The location of the substitute single stringer may
be defined by the expression -

bg = Fbg (33)

where f 1s a factor less than unity. In an attempt to establish this
factor on a theoretical basis, comparative calculations were made for a
number of multistringer panels as follows. Three types of panels were
selected, each type having two, six, or infinitely many stringers in
the half-sidth. For each type, panels of two proportions were selected,
one panel in which the flange area Ap was a fraction of the total

stringer area AL and one panel in which Ap was a multiple of AI.
The ratios AF/AL chosen were not the same for all types of panels

because available results were used whenever possible. For each of the
six panels thus selected, the shear stress along the edge was computed
by a "rigorous" method (infinite transverse stiffness being assumed)

and again by the substitute single—stringer method for three assumed.
values of the factor f£. The shear stress was chosen asg a basis of com—
parison in preference to the flange stress because it is a more sensitive
criterion. (The flange stress is known from elementary statics at

both ends of the panel; consequently, no theory can err very mich on the
flange stress.)

For the two-stringer panel, equations (10) were set up and solved;
for the six—stringer panel, the method of reference 4 was used, and,
for the stringer sheet, the method of reference 5.

The results are shown in figure 5. For the two—stringer panel
with a swall flange (fig. 5(a)), £ = 0.7 glves a very close approxima—
tion (within a fraction of a percent); with the large flange (fig. 5(b)),
the error is about 4 percent, the substitute single—stringsr method
glving the higher shear stress. For the six—stringer panel with a
small flange (fig. 5(c)), £ = 0.5 gives the best approximation, end the
inspection of the curves indicates that the agreement could be improved
by use of a mmaller value-of f£. For the six—stringer panel with a
large flange (fig. 5(d)), £ = 0.5 gives the best approximation for the
maximm shear stress, although not the best one for the stress at some
distance away from the tip.

For the stringer sheet, the rigorous theory gives an infinite shear
stress at the tlp. By the substitute single—stringer.method, this value
cannot be obtained if a reasonable approximation to the rigorous shear
stresses at finite distances away from the tip is also to be obtained.
The single—stringer method in which a finite value of the factor f 1is

7/
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used is capable only of approximeting the rigorous shear stresses over a
certain region away from the tip (figs. 5(e) and 5(f)) and yields then
finite values of maximm shear stress. If the infinite shear stress of
the rigorous theory were to be obtained by the single—stringer theory,
it would be necessary to make the factor £ equal to zero.

The results may be.summerized as follows: In order to achleve the
best possible agreement between the maximm shear stress calculated by
the substitute single—stringer theory and that calculated by the rigorous
theories based on the assumption of Infinite transverse stiffness, the
factor f should be taken as about 0.7 for two—stringer panels and
should be progressively decreased to zero as the number of stringers
goes to Infinity.

Tne preceding comparisons ars essentlally of academic rather than
practical interest. Actual panels have only finite transverse stiffness,
and the factor f would therefore be determined best by comparisons
with rigorous theories based on the assumption of finite transverse
stiffness which would eliminate the difficulty of dealing with the
infinite shear stresses encountered in the limiting case of Infinitely
many stringers. Unfortunately, the only theorles available (references 8
and 9) require laborious calculations, and experimental checks would
still be deslirable because simplifying assumptions are made even in
these theories. For these reasons, further work on the theoretical
determination of the factor f was abandoned in favor of a direct
empirical determination.

Bmpirical location of substitute stringers and verification of
theory for finite transverse stiffnessg.— For the empirical determination
of the factor £, shear strain measurements alongside the flanges of
three panels of constant sectlon and two panels of variable sectlon
were used. The constant-section panels are shown in figure 6. Panel A
had been tested previously (reference 2). Panel B was built to the
same nominal dimensions as panel A, except that the heavy tip rib was
replaced by a very light rib. The rigorous theory bassi on the aszump—
tion of Infinite transverse stiffness indicates that the number of
stringers in these panels is sufficient to be considered as "large,"
in the sense that the stress distribution does not differ appreciably
from that in a panel with an infinite number of stringers, the main
difference being the finite value of the peak shear stress. However,
panel C was built in order to obtain a direct check for this limlting
case. The shear stresses in the sheet were measured with Tuckerman
optical strain gages placed as close to the flanges as the gage length
of 2 inches would psrmit.

Tests were also avallable on two panels with tapered flanges and
a small number of stringers (fig. 7). These panels differed mainly in
that panel D had flanges machined from one piece, while the flanges of
panel E were built up.
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Preliminary calculations for the constant—sectlon test panels were
made as follows. Three values of the factor f (the same three that
were used for the comparisoms in figure 5) wers chosen. For the resulting
substitute single—stringer panels, the shear stresses were calculated
on the assumption of infinite as well as Pinite trensverse stiffness with
the theory developed herein.

Preliminary calculatlions for the tapered—flange panels D and E were
slightly more involved. The first step was the calculation of shear stresses
based on the assumption of infinite transverse stiffness by means of the
recurrence formula and expression (12). A "reference panel" was then
introduced that was similar to the actual one except that, starting Just
beyond the tip, taper was Incorporated into the flange in such a manner as
to glve constant flange stress. For this reference panel, shear stresses T

were calculated on the assumption of infinite transverse stiffness and
stresses T, on the asgumptlion of finite stiffness. The ratio TE/Tl was

then used to correct the shear stresses calculated in the first step.
This method was Justified by the facts that the flanges had roughly constant
stress and that the correction factors dild not differ greatly from unity.

Inspection of figures 8(a), 8(b), and 8(c) shows that even though
the factor f 1s varied over qulte a wilde range (from 0.5 to 0.9), the
curves contract into a rather narrow bend at some distance from the tip;
they fan out only in the tip region. The cholce of the factor must
" therefore be based chiefly on comparisons between experimental and
calculated stresses in the tip regions, a procedure which is also desirable
because the largest stresses exist in the tip region. Some comsideraticn
should be glven, of course, to the stresses in the remainder of the
panels.

The preliminary comparisons showed that & factor £ = 0.7 gave
fair results for all five panels, although three different stringer
nunbers were represented (n = "( for panels A and B, n = o for
penel C, n = 3 for panels D and E). Ontheotherh.and. the com~
parisons with rigorous theorles shown In figure 5 indicated that the
factor should increase with decreasing stringer number, and for a (half)
panel wlth a slngle stringer, the factor should logically be equal to
unity, because the substitute panel should be identical with the actual
one in this limiting case. (The "actual" pamel referred to is, of
course, an ideallzed one in which the sheet carries only shear.) Closer
comparisong between the curves for £ = 0.7 &and the experimental results
indicated that the agreement could be lmproved scmewhat by meking *
variable in agreement with these considerations. The test data are
inadequate to establish f as a function of n wlth a high degree of
accuracy, particularly when n is very small (n = 3 or 2). Fortunately,
the calculations Indicate that the results are not sensitive to changes
in f, and panels with very few stringers are of little practical
interest. As a tentative solution, the expression

f = 0.65 + 0;1_35 (3)4-)
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was chosen after consideration was given to such differences as existed
between the test results and the preliminery curves based on £ = 0.7.
(Some Judgment should be used when the ratio of stringer area to normal—
stress-bearing sheet area 1is very much less than In the test panels. IT
a very small stringer were attached at the center 1line of panel C, the
streas obviously would change very little, and n sghould be taken as
infinity rather than unity in expression (34).)

)

Figures 8 and G show that the solid—line curves calculated with
expression (34) agree quite well not only with the measured peek stresses,
but in general also with the measured stresses along the entire length of
the curves. The highest measured stress in panel A (second test point
from tip) is about 4 to 6 percent higher than the calculated stress, but
comparison with the first point indicates the probability of a local
irregularity or a test error. Of particular interest 1s the close agree—
ment between measured and calculated stresses in panel B with the very
light tip rib. The difference between the curves calculated for this
panel on the assumption of elther Infinite or finite transverse stiffness
is very marked and indicates that a shear-lag theory satisfactory over
the entire range of design proportions cannot be obtained 1f the transverse
stiffness is assumed to be infinite. Panel B has a lighter tip rid than
1s likely to be encountered in practice; however, even on panels A and C,
which have tip ribs consliderebly heavlier than llkely to be found in
practice, the effect of finite transverse stiffness on the peak shear
stress is appreciable (of the order of 20 percent).

Figure 8(d) shows the flange stresses in panel C. There 1s a
suwrprisingly large varlation of stress over the width of the flange,
which 1s only 1 inch wide; the variation disappears at a distance fram
the tip equal to about 6 times the flange width.

On panels D and E, the calculated effect of finite transverse
stiffness on the peak shear stresses was fairly small (figs. 9(a) and 9(b)),
end the calculated stresses exceed the measured stresses nearest the
panel tips by 4 percent and 10 percent, respectively. The discrepancies
can probably be attributed largely to a slmplifying assumption lmplied
In the theory. The transverse ribs have a finite bending stiffness wlthin
the plane of the panel; they are therefore capeble of transferring some
load from the flenge to the stringers, and they restrain the shear
deformation at the corners of the panels. This rib effect 1s neglected
by the present theory; it was more importent in pemnels D and E than in
the other panels because the ribs were stiffer by virtue of smaller
length, greater sectiom, or both.

In the calculations shown for panels D and E, the transverse ribs
(other than the tip rib) were disregarded. Calculations were also made
on the assumption that the material in these ribs was uniformly distributed
spanwise to equel distances on either side from the actual location of
each rib, with the result that the value of ty (thickness of "rib—
sheet") was greatly increased. On the other hand, the value of Ag was
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decreased because a part of the material in the actual tip rlb was
assumed to be spread out to form the rib sheet in the outboard half of
the tip bay. (This procedure appears to be the most logical cne and
was also suggested in reference 9). The increase in tp and the

decrease 1n Ap counteracted each other, and the stresses calculated

in this manner were practically idemtical with those shown in figures 9(a)
and 9(b). In general, such close agreement between the two methods -of
calculation cannot be expected. Because the first transverse rilb lies

at a statlion where the shear transfer 1s largely completed, the first
method of calculation (the ribs being entirely disrega.rded3 is probably °
more appropriate. If the plitch of the ribs were, say, 5 inches or less
rather than 21 inches, the second method would seem more appropriate.

Figures 9(c) and 9(d) show the flange stresses in panels D and E.
The measured stresses shown are those on the top surfaces; the "feather
edge" of each strap carries only a low stress because the first rivet is
not stiff enough to transmlt the full load to the strap. Investigation
of this "shear—lag effect" within the pack on other panels has shown that
the average stress In the pack agrees well with the calculated stress;
the deficlency of stress in the outermost straps is compensated by an
excess In the inmnermost straps which has been found to be as high as
30 percent in packs of somewhat similar proportions.

CONCIUSIONS _

The method of calculating shear—lag effects in axially loaded panels
by msans of the previously developed concept of the substitute single~—
stringer panel is improved in two respects:

(a) The width of the substitute panel 1s calculated by an empirical
formilse which eliminates the successive approximation procedure used
previously.

(b) A method for teking into account finite transverse stiffness
1s introduced.

Test results on three panels of constant section having a "large"
number of stringers agreed within 4 percent with the calculations. On
two panels with tapered flanges having only 3 stringers in the half—panel,
the calculated peak shear stresses exceeded the measured values by
} percent and 10 percent, respectively.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Lengley Field, Va., August 16, 1948
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——  “Rigorous’ solution

-~————— Subsfitute - single - stringer solution, bg = 0.5 b,
— — — Substitute - single -stringer solufion, bg = .7b¢
——-—— Substitute - single - stringer  solufion, bg = .9bg-

Figure 5.- Gomparisons between solutions obtained by rigorous methods (on assumption of infinite
transverse stiffness) ond substitute-single-stringer method.
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——— Stress colcukited on ossumption of infinife fronsverse stiffness
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Figure S.- Experimental and calculated siresses in test panels with tapered flanges. @
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